Gulf of Mexico Miocene CO₂ Site Characterization Mega-Transect

Participants

- NETL, Bruce Brown
- The University of Texas at Austin
 - Gulf Coast Carbon Center, Bureau of Economic Geology
 - Institute for Geophysics
 - Petroleum and Geosystems Engineering
- Los Alamos National Laboratory
- Environmental Defense Fund
- Sandia Technologies

Tremendous capacity in offshore wedge

Prograding wedge of fluvio-deltaic sediments in upper Miocene stratigraphy

Variety of settings for viable traps

Courtesy of Angela McDonnell, BEG

Offshore State-owned lands

Additional assurance is needed regarding capacity and containment

Texas State Offshore Lands & CCS

- General Land Office (GLO): Revenues to Permanent School Fund (lower taxes) - \$11B since 1854
- HB 1796 (2009) Offshore CCS feasibility study (\$1.2M; GLO)
- NETL FOA-33: Characterization (\$4.8M)
- Single land owner avoids NUMBY, pore space ownership, trespass, and liability issues.
- Reduced risk to **USDW** (protected groundwater)
- Monitoring techniques exist and can be applied to CCS, but have not to date in U.S.
- Risks need thorough evaluation
 - LANL: CO2-PENS
 - Environmental Defense Fund
 - Utilize evolving international experience
 - Sleipner (Statoil-Hydro)
 - Australian acreage release
 - UK feasibility study

CO₂ Brine Storage Capacity

CO₂ Brine Storage Capacity

♣ ▼ ■ 100%

one)

Tasks

- <u>Task 1</u>: Project Management, Planning, and Reporting (Trevino, Meckel)
- Task 2: Regional Significance (Meckel, Carr, Hovorka)
 - Subtask 2.1: Atlas of prospective sequestration 'plays'
 - · Structure contour, isopach, cross sections
 - · Reservoirs and seals
 - Subtask 2.2: Comprehensive data set of formation characteristics
 - Texas Railroad Commission, General Land Office
 - · Poro, perm, injectivity, mineralogy, fluids
 - Subtask 2.3: Best practices for site characterization
 - Conveyed to technical working groups on characterization
- Task 3: Site Capacity Estimates (Meckel, Hovorka, Nicot, URA)
 - Regional upper Miocene
 - Local highly-prospective reservoirs
 - Meet DOE goal of +/- 30%
 - Subtask 3.1: Coordination with NATCARB database
- <u>Task 4</u>: Site Injectivity (Trevino, Nicot, Zeng, Carr, Bryant, PhD student)
 - Subtask 4.1: Data collection / Analysis: Task 2.2; Petrel
 - Subtask 4.2: Simulation
 - GEM, Eclipse, Kappa Ecrin
 - Meet DOE goal of 30 MT or lifetime of plant
- <u>Task 5</u>: Site Stratigraphic Containment (Meckel, Carr, Lu, PhD student, URA)
 - Subtask 5.1 Modeling: Permedia MPath + CO2 Toolkit; 99% containment 1,000 yrs
 - Subtask 5.2: Caprock Seal Capacity: BEG CRC

Tasks - continued

- <u>Task 6</u>: Brine Containment (Romanak, Zhang, Nicot)
 - Laboratory hydrothermal simulations: autoclave reaction system- reaction rates
 - Optical sapphire window reaction system + high temperature pH probe and Raman spectroscopy; SEM & AFM
 - Aqueous phase modeling
- <u>Task 7</u>: Mineralization Containment (Romanak, Zhang, Yang)
 - Phreegc & Geochemist's Workbench: equilibrium and kinetics
- <u>Task 8</u>: Leakage Pathways (Meckel, Lu, Hornback)
 - Badley's TrapTester: SGR, effective stress (3D survey in La Vaca Bay example)
 - Permedia MPath: long-term migration, sub-basin scale, 10²-10³ yrs
- Task 9: Site Selection (Trevino, Meckel, Hovorka): Go/No-Go decision
- <u>Task 10</u>: Risk Assessment (Pawar-LANL; Anderson-EDF; Duncan-BEG)
 - Subtask 10.1: CO2-PENS analysis (Pawar)
 - Subtask 10.2: Identification of environmental risks specific to offshore settings (Anderson, Duncan)
- Task 11: Well Bore Management (Trevino, Collins)
 - Subtask 11.1: Wellbore Evaluation for Wells Within Study Area
 - Subtask 11.2: Draft Wellbore Management Plan
- Task 12.0: Produced Fluid Management

Research Development

<u>AIMS</u>: Identify where greatest uncertainties are through thorough characterization and collect additional data to reduce those uncertainties, facilitating near-term commercial utilization.

Examples of Characterization Data

Modeling & Simulation

Permedia"

Focus on:

- Reservoir capacity (site)
- Potential long-term migration (invasion percolation techniques)
- influence of faults

Risk Assessment for Offshore CCS

Pawar & Carey, LANL; Anderson, ED; Duncan, GCCC

Los Alamos National Lab:

CO2-PENS is a coupled processsystems model that integrates field/laboratory observations with numerical models and abstractions to predict long-term performance of a geologic CO₂ sequestration site. The model accounts for CO₂ migration in the primary reservoir and beyond through potential leakage pathways such as wellbores, faults etc.

Gulf Coast Carbon Center:

- Compile & review available technical literature on risks of offshore sequestration
- Gather data relevant to studies by LANL and EDF
- Liasson to LANL and EDF

Environmental Defense:

Nationally recognized environmental advocate tasked with independent assessment of potential risks. Collect information on the various concerns of regional stakeholders.

Gulf of Mexico Miocene CO₂ Site Characterization

Mega-Transect

John A. & Katherine G. Jackson School of Geosciences · University Station, Box X · Austin, Texas 78713-8924 10100 Burnet Road, Bldg. 130 · Austin, Texas 78758-4445 · (512) 471-1534 · FAX (512) 471-0140